Orthogonal versus covariant Lyapunov vectors for rough hard disk systems

نویسنده

  • H. Bosetti
چکیده

The Oseledec splitting of the tangent space into covariant subspaces for a hyperbolic dynamical system is numerically accessible by computing the full set of covariant Lyapunov vectors. In this paper, the covariant Lyapunov vectors, the orthogonal Gram-Schmidt vectors, and the corresponding local (time-dependent) Lyapunov exponents, are analyzed for a planar system of rough hard disks (RHDS). These results are compared to respective results for a smooth-hard-disk system (SHDS). We find that the rotation of the disks deeply affects the Oseledec splitting and the structure of the tangent space. For both the smooth and rough hard disks, the stable, unstable and central manifolds are transverse to each other, although the minimal angle between the unstable and stable manifolds of the RHDS typically is very small. Both systems are hyperbolic. However, the central manifold is precisely orthogonal to the rest of the tangent space only for the smooth-particle case and not for the rough disks. We also demonstrate that the rotations destroy the Hamiltonian character for the rough-hard-disk system. ‡ Present address: Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, 1090 Wien, Austria Orthogonal versus covariant Lyapunov vectors for rough hard disk systems 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covariant Lyapunov vectors for rigid disk systems

We carry out extensive computer simulations to study the Lyapunov instability of a two-dimensional hard-disk system in a rectangular box with periodic boundary conditions. The system is large enough to allow the formation of Lyapunov modes parallel to the x-axis of the box. The Oseledec splitting into covariant subspaces of the tangent space is considered by computing the full set of covariant ...

متن کامل

Comparison between covariant and orthogonal Lyapunov vectors.

Two sets of vectors, covariant Lyapunov vectors (CLVs) and orthogonal Lyapunov vectors (OLVs), are currently used to characterize the linear stability of chaotic systems. A comparison is made to show their similarity and difference, especially with respect to the influence on hydrodynamic Lyapunov modes (HLMs). Our numerical simulations show that in both Hamiltonian and dissipative systems HLMs...

متن کامل

Perturbed phase-space dynamics of hard-disk fluids

The Lyapunov spectrum describes the exponential growth, or decay, of infinitesimal phase-space perturbations. The perturbation associated with the maximum Lyapunov exponent is strongly localized in space, and only a small fraction of all particles contributes to the perturbation growth at any instant of time. This fraction converges to zero in the thermodynamic large-particle-number limit. For ...

متن کامل

Lyapunov Modes and Time-Correlation Functions for Two-Dimensional Systems

The relation between the Lyapunov modes (delocalized Lyapunov vectors) and the momentum autocorrelation function is discussed in two-dimensional hard-disk systems. We show numerical evidence that the smallest time-oscillating period of the Lyapunov modes is twice as long as the time-oscillating period of momentum autocorrelation function for both square and rectangular two-dimensional systems w...

متن کامل

Critical transitions and perturbation growth directions.

Critical transitions occur in a variety of dynamical systems. Here we employ quantifiers of chaos to identify changes in the dynamical structure of complex systems preceding critical transitions. As suitable indicator variables for critical transitions, we consider changes in growth rates and directions of covariant Lyapunov vectors. Studying critical transitions in several models of fast-slow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011